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The temperature and volume dependence of the thermal pressure coefficient y, have been examined using
experimental data on 7y, for simple liquids argon and water based on the equation of state derived in a
previous work. The expression for 7, is given by 7,V ~[{(T,— T)/T}? + Cy] X" exp(ag *1,) where
e =Yy — Vv.c» T. is the critical temperature and I, is defined by I, = [, X#°/V dV where X = (V. —V)/V
and V, is the critical volume. The heat capacity at constant volume C, is given by
C,~C(T)—[{(T.— T)/T}* /T] x aqyexplag*l,) where C,(T) is a function of temperature. Values of
0o, Bo» 09 and C, are constants. The equation of state for simple liquids is expressed using Y = (T, — T')/T by

Y

P= (X”“/V)HT(Y"0 +Co) —J Y*7l/(1+Y) dY} exp(ag 'Io) — Do explag 110)]
0o

where D, is a constant. The temperature dependence of y, at constant volume for polymers is examined

based on the experimental data by Simha and is given by y, ~ T*~! and kg is —0.24 for polystyrene and

poly(n-butyl methacrylate) and 2.8 for polymethyl methacrylate. The equation of state for a polymer is

derived by the same procedure as for a simple liquid and is given by

P=Cy(TYZ"/V)T explog *1,.,) — CLUTHZ™/V)explay '1, ,,)

where Z = (V — Vo)/V, L, = [o Z*/V dV, C{(T)is a function of temperature, 1, 4o, @ and «; are constants
and V,, is a constant volume at 0 K. The expression for y, is given by 5,V ~ Z* where 7, is a constant. The
values of 7, determined by the experimental data are —1.89 for polystyrene, —1.64 for polyisobutylene
and —2.67 for polydimethy! siloxane. An essential difference between polymers and simple liquids is
discussed in terms of the functional form of the equation of state. A characteristic feature of the volume
dependence of entropy and internal energy is discussed through the experimental data on y, over a wide

range of temperature and pressure.
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INTRODUCTION

The equation of state for polymers and simple liquids is
the most fundamental tool used in characterizing and
predicting the thermomechanical and thermodynamical
properties of pure liquids and liquid—liquid mixtures over
a wide range of pressure and temperature. The most
famous equation of state for liquids was derived by van
der Waals':

PV/T=VR/(V —b)—a/VT 1)

where a and b are constant and R is the gas constant.
Equation (1) is expressed in a more general form by

P/T=f(V)—g(V)/T )

Most equations of state derived by other authors?~® have
a functional form similar to equation (2) although f(V)
and g(V') depend on the model used for the entropy and
intermolecular energy of the liquid. In the Flory theory?
of corresponding states the Tonks model for the entropy
and the van der Waals model for intermolecular energy
are used, while in the Simha—Somcynsky theory the hole
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model and the square-well approximation to the cell
potential are used*. In a previous work we examined the
Flory equation of state and found that the van der Waals
model and Tonks model are useful only over a limited
temperature range below the boiling point of the liquid®
and proposed a semi-empirical equation of state for
polymers and simple liquids in non-critical and critical
regions from the standpoint of the homogeneous function
approach'®. Many authors, such as Bridgman'!, Gib-
son'214 Scott!® and Foulkes!'®, have examined the
van der Waals equation of state experimentally and
theoretically and found that the thermal pressure coeffi-
cient y, depends on temperature at constant volume,
which does not agree with the prediction of van der
Waals’ equation that y, depends on volume only.
Experimental results on y, suggest the following
equation:

P/T=hV,T)—m({V,T)/T (3)

where both k(V, T) and m(V, T) are functions of volume
and temperature.
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The main purpose of this work is to determine the
functions h(V, T) and m(V, T) by using the experimental
data and an equation of state derived by the homo-
geneous function method. An essential difference between
polymers and simple liquids is discussed in terms
of the equation of state.

DERIVATION OF EQUATION OF STATE
BASED ON THE HOMOGENEOUS FUNCTION
METHOD

In previous wor we derived an equation of state
based on the following assumptions for internal energy
Eandentropy S: E=E(V)+ E(T),S=S(V)+ S(T). We
determined that the thermal pressure coefficient y, is a
function of volume'® and the heat capacity at constant
volume C, is a function of temperature only!® and,
therefore, (0y,/8T), =0 and (¢C,/0V); =0.

In this work we assumed the following equations for
E and § to explain the negative (dy,/0T), and negative
{0C,/8V); observed:

k10,17,18

E=E—().T-P)V (4)
:EI(V’ T)+E11(T) (3)
S§S=8S—-y,.V (6)
=S8V, T) + Su(T) (M

where a subscript ¢ refers to a value at the critical point.
E and § represent the internal energy and entropy
determined by taking the critical point as a reference
state and are expressed as the sum of two terms, one a
function of volume and temperature and the other a
function of temperature only. Then we assumed that

E\(V, T) and §,(V, T) are expressed by a homogeneous
function of V/(V V) as

WV, T)=ao(3,T — PYV{V/(V,— V)}b (8)
S[( v, T) = 0(0'))VV{V/ Vc — V)}ﬂD (9)
where ag, by, 2, and 8, are constants.

The following equations are also obtained from
equations (4) and (5):

@E/aV)r=79T—P—(3,.T—P)=3,T—P (10)
where P=P — P and j, =7y, ~ 7,

.- From equation (6)

Voo =Dy (11)
The equation of state is given from equations (10) and
(11) by

= (68/0V); T — (CE/0V); (12)

The following equations are derived through the same
procedure as in Reference 10:

5, T —P=C(TYX™/V) exp{ 1J

Ve

v

Xbo/y dV} (13)

where C,(T)is a function of temperature, X = (V, — V)/V
and

Cz(T)(X”°/V)eXp{ 0! JV

Ve

Xbo)y dV} (14)

where C,(T') is a function of temperature. The equation
of state is derived as

P= CZ(T)T(X”"/V)exp{ ‘JVX/“/VdV}

— C(T)(Xt/V) exp{ao‘l JV Xb/V dV} (15)

V.
The main difference between this and previous work is in
the use of C,(T) and C,(T) instead of constants C, and
C, (Reference 10). By taking a derivative of equation (15)
with respect to temperature at constant P, it is derived
that

M[T_l LGy
dT
4 4iny,/1y,) Vap:‘ N p{_d,%@
dv dT

- BO)Vcap/ VX

dinl,
— (boV./VX + 1 "+T1?*V } 0 (16)

where I, =exp(ag ! [}, XP°/V dV), I, =explay~ ' fy. X%/

VdV)and ot = (01n V/8T),. By using an approximation
that ¥, T » P, equation (16) reduces to

di T T
(o, T) "+~ ~—n{C2((-i\;/C‘(v)} o, '+ Velbo — Bo)/ VX

dv

By considering the limiting case limy_; «, — 00, equa-
tion (17) is expressed by

R

L dIn{C,(T)/Cy(T)}

(,T) " ' = (a5’ %, T

— a3 )x*

(18)

where the equation f, = b, is used, which is obtained

from (¢, T)~" — 0 in the limit T — T,. It is also obtained
from equations (14) and (15) and (0P/0T)y =
(OP/0T)y —limy_ 1 (OP/0T)y =7y, — ¥, =7, that

dT dT

where I, is defined by I, =y X#°/V dV and V, in the
integration range means lim,_ 1 V.

Expressions for E and § are obtained from equations
(5), (7), (8), (9), (13) and (14) as follows:

E=aoC,(T)explag 'Iy) + E(T) (20)

dCz(T)>

T expl; ‘Io)< xpla alm(ich)) (19)

and
§ = 0,Cy(T) explag '1o) + 8p,(T) 21)

From (0E/0T),=T(5/6T),—7,.V, obtained from
equations (4) and (6), and the thermodynamic relation
(PE/0T),=T(88/0T),, a relation at V = const. is ob-
tained as
dC,(T)

ag 717:— explag 1Io) + dT

dC,y(T dSy(t
= {“0 dz;..lexp(a(;um (;‘;:3} (22)

It is very interesting to derive C, from y, using the
thermodynamic equation

(0C,/0V)r = T(0y,/0T)y (23)

dE(T
D)y
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and, therefore,
C,= JT(@yv/aT)vdV+ C,(T) (24)

where C,(T) is an integration constant and a function of
temperature. Using the relation (éy,/0T), = (6%,/6T),
and equation (14), C, is given by

C. = T{dC,(T)/d T} exp(eg 'Lo) + C(T)  (25)

EXPERIMENTAL DATA ON TEMPERATURE
DEPENDENCE OF y, AT CONSTANT
VOLUME AND VOLUME DEPENDENCE
OF C, AT CONSTANT TEMPERATURE

Typical data for the pressure—temperature curve at
constant volume for polymers!®2° poly(n-butyl meth-
acrylate) (PNBMA) and poly(methyl methacrylate)
(PMMA) are shown in Figure 1, where values of (0P/3T),
for PNMBA decrease and those for PMMA increase
slightly with increasing temperature at constant volume.
The P-T line at constant volume is expressed by

P=A4,T*+B, V=const. (26)

Values of A4,, k, and B, obtained by the best fitting to
the data are listed in Table 1. In Figure 2 experimental
data on y, for argon®! are plotted against tempera-
ture at constant volume. y, decreases with increasing
temperature.

The volume dependence of C, at constant tempera-
ture for argon?! is shown in Figure 3. C, decreases

with increasing volume or increases with increasing
X=(V,—-V)/V.

1.2,

S 0

P(katm)
5
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D
P(kcmf)
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0d . . . . . . . Y

250 300 350 400 50 500
TK)

Figure 1 Pressure versus temperature at constant volume for: Q,

PMMA (0.835cm?® g™1); A, PNBMA (0.95 cm® g~ !). Data are taken

from Reference 19

DISCUSSION

It is interesting to examine whether the experimental
behaviour of y,, C, and y, T — P over a wide range of
temperature and volume are explained by the equation

25 T T T T T T
Py A |
<
= A
*E 20% o . 1
~ Tr——a A
- ~ <
L — — e _
~. o\
\.\ o o=
15 '\'\.\,_ .
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Figure 2 Thermal pressure coefficient y, versus temperature for argon
at various volumes: A, 27.78; [, 28.57; O, 29.41; @, 30.30 cm> mol !,

Data are taken from Reference 21. ——, Calculated from equation
(27)
40 35 30 25 (cmImol)
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Figure 3 C, versus X (=(V,—V)/V) or V for argon at various
temperatures: O, 150; W, 140; A, 130K. , Calculated from
equation (29) with n=3.6, ¢=0.05 and C, ,=1.63. Data are from
Reference 21

Table 1 Values of constants in P = 4,T*° + B, for polymers at various constant volumes®

PNBMA PS PMMA

| 4 14 |4

(cm?®g™1) 10744, 1074B, Kk, cm®g™!) 10724, 1028,  k, em®g™1) 1054, 1072B, K,
0.95 —9.42 1.51 —0.32 0971 —9.25 1.20 -0.35 0.820 02 8.18 338
0.96 —-723 3.42 —0.13 0.980 ~113 8.73 —0.04 0.825 43 3.94 2.89
097 —0.10, 7.66 —0.05, 0.990 —8.16 1.15 033 0.830 6.1 0.78 2.84
0.98 —7.30 4.06 -0.10 1.00 —7.87 1.20 —0.32 0.835 218 —245 2.60
0.99 —8.65 124 —0.33 0.840 61.0 —542 247
1.00 —6.80 1.54 —025

“Data are taken from Reference 19 for PNBMA and PMMA and Reference 20 for PS. The unit of P is atm
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Table 2 Constants in 3, = A,{(T, — T)/T}* + B, (equation (27)) and 3, T — P = 4,{(T, — T)/T}* + B, (equation (32)) for argon”

iz »nT—P
V (cm? mol 1) A, 3o B, V (cm® mol 1) A, £ B,
27.03 15.5 223 18.6 27.0 1607 1.8l 1127
27.78 7.43 1.74 17.1 28.0 1183 1.56 1198
28.57 5.26 1.43 15.7 29.0 879 1.29 1208
29.41 4.99 1.32 14.3 30.0 1071 1.62 1225
30.30 3.82 1.25 13.0 320 710 1.30 1134
31.25 5.05 1.54 1.7
32.26 4.12 1.43 10.5
“Data are taken from Reference 21. The units of §, and P are atm K ™! and atm, respectively
of state in this work. First, it is necessary to determine T ‘300
C,(T) in equation (14) based on experimental data for " e ‘
7,. We assume that C,(T') is expressed by a homogeneous . \\
function of (T, ~ T)/T: <—1 . -
CoT)~3,=A,{(T,.— T)/T}**+ B, V=const. (27) /,)"\.1.

. . . N 141 1250
Values of , determined by best fitting to data in Figure oo e N
2 are listed in Table 2. C, is given by using equations i Ve Ay

(25) and (27) as

C.~C(T)— A1(TC/T)%50{(TC - T)/T}ao_l eXp(aallo)

(28)

The divergence of C, near T, is due to C,(T) since d, > 1.
If an approximation I, = [y X%°/V dV ~ — X"is used, C,
in equation (28) is expressed by using A, (T,/T)x, x
SoY% ' =A,(T) as

C,=Coot Ao(T){1 —exp(—cX")}  (29)

where C,, is the value of C, at X=0 and C, o=
C(T)— Ay(T). A comparison between the experimental
data C, for Ar and C, calculated by equation (29) with
n=3.6 and ¢=0.05 1s shown in Figure 3, where
reasonable agreement is obtained.

Values of 7, T — P calculated from equation (13) using
the experimental data on 7, for Ar at constant tempera-
ture are plotted against volume in Figure 4. C,(T) is
calculated from equation (19) by

T
C1(T)=eXp{(“ol_aal)Io}f T{dCy(T)/dT} dT
(30)

~€Xp{(a51—ao o}f Yoo~ 1/ Y)dy
(31)

where equation (27) for C,(T) and Y=(T,—T)/T are
used in deriving equation (31). The function C,(T) is
determined by a plot of §, T — P against temperature at
constant volume using the data in Figure 4 and is
expressed as

C(T)~3T—P=A,Y*+B, (32)

where v=constant.

Table 2 shows that values of g, are comparable with
8o in C,(T), which is expected from equation (31) through
C(T)~ Y% when Y « 1.

The volume dependence of 7, at constant temperature
is analysed with equation (14) using the approximation

that Io=K —v,In X (33)
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Figure 4 3,7 — P and 7, versus V for argon at various temperatures.

The plots for 5T — P are: O, 150; A, 140; [], 130; A, 120; @, 110;
M, 100 K. The plot for 7, is @, 150 K. Data are taken from Reference 21

where K and v, are constants, which leads to
3V = CE(T)X B0 om0 ) (34)

As is shown in Figure 5 a linear relation between In(j, V)
and In X with a slope (B, —voa, ') < 1.36 is observed
(Table 3). The volume dependence of (CE/éV )y =7, T — P
for water at saturated vapour pressure calculated from
the experimental data is shown in Figure 6, where the
volume dependence of ¥, is also included. In Figure 7 an
attempt is made to explain the volume dependence of
5, T — P by using equation (13) with b, = 8, = 2.60, which
is obtained experimentally from the volume dependence
of &, in equation (18) (see below). It is noteworthy that
the functlons (3, T — P)V for argon and water are almost
the same in reduced form, In(j,T— P)V=12.15+
2.601In X —1.8X for Ar and In(3, T —P)V =13.21 +
2.60In X — 1.68X for water, and that a good prediction
is obtained except for large X or smaller volume

POLYMER, 1991, Volume 32, Number 7 1247
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Table 3 Constantsin (2, T) ™" = (ag ' — g ) X% (equation (18))and 7,V = C4X' @o-10%Y) (equation (34)) for argon®

?VV
(@T)7!
c
P (atm) @' —agt) Bo T (K) (@tmem® K~ mol™")  (Bp—7o% ")
40 0.74 2.6 110 262 1.30
80 0.80 2.5 120 247 1.33
200 0.94 2.2 130 245 1.30
600 1.09 2.1 150 233 1.36
“Data are taken from Reference 21
3 . . 3 !
é —— g 0.5 . 10 . 15 i 20 =
o e £
g7 £ %
= 5 £
K] 2 T~ 123
> )- e E \6 \A L >c<
z /‘7//6’?@/ @ \ ~7, <
n f%ﬁ% > S T B N
26 s i ° .\\ \A\ 0.2
< 52 10 8\:;\00“ %a l'l
= c . a 3
T 1 T * T
A/ \‘no\qb 8
5 /°/ 4 s \E‘NB A 2
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E\
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9.0
4 . " . . . . ; . . A A R s X \
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In X

Figure 5 In(y, — v, )V versusIn X for argon at various temperatures:
O, 150; A, 140; @, 130; OJ, 120; A, 110; v, 100K
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Figure 6 5,7 — P and §, versus V plots for water at saturated vapour
pressure: O, 3,T— P; @, J,. Data are taken from Reference 22

corresponding to high pressure. The maximum point in
the (5, T — P) versus V curve indicates an inflection point
in the E-V or E-r curve. The volume at the inflection
point is about 29 cm® mol~! for Ar and 20 cm?® mol !
for water and a great difference between Ar and
water is observed in the maximum internal pressure.
(6E/5V)T,max ~ 1.4 katm for Ar and 6.0 katm for water.
There is another important relation between 7,—V and
(#,T — P)-V curves for Ar: ¥, decreases monotonously

*latm~10°N
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X

Figure 7 In(5,T — P)V —2.6In X versus X for argon (A) and water
(B). Temperatures for argon are: O, 150; A, 140; @, 130; (1, 120 K.
Data are taken from Reference 21 for argon and Reference 22 for water
at saturated vapour pressure

with volume from 24 to 44 cm® mol ~ !, while 7, T — P has
a maximum around 29 cm® mol~1, which suggests that
the inflection point in the E-V curve does not coincide
with that in the S—V curve and that the inflection point
for the entropy may exist at much smaller volume. On
the other hand, if it is assumed that 7, for water depends
on volume only, a maximum point for the §,—V curve is
at 20 cm® mol ™!, which is the same as the maximum
point in the (5, T — P)-V curve (see Figure 6).

It is interesting to discuss the functional difference
between 7, and 3,T— P with respect to volume at
constant temperature based on equations (13) and (14)
with b, = f,, where the main difference appears in the
constants «g and a, only. It is possible to calculate the
condition for the maximum for §, and ¥, T — P against
V, given by

(07,/0V ) = X1 —ag(1 4 Bo)X —aofo=0 (35)
and
{03, T — F)/aV}T =XPr! —ag(1 4+ Bo)X —apBo =0
(36

In the simple case of f, = 2.0, the relation between the
maximum volume for the $,—V curve and «, is shown
in Figure 8 (the same relation holds for a,). The volume
at the maximum point for 7, or ¥, T — P decreases with
increasing o or do. The value of g, for Ar is evaluated
from equation (36) with f,=2.60, X_.. = (V./V ...)—1,
V.=746cm?®mol ™! and ¥, =29 cm®mol~ !, which
gives a, = 0.617. The relation ag ! — g ! = 0.94 obtained
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o ' ' ' ' ' ]

30+ 0\ ]
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Figure 8 V., versus o, calculated from equation (35) with f,=2.0

1N T)

//

. L " L " . "
—04 -0.2 0.0 0.2 0.4 0.6

Figure 9 In(x, 7)™ ! versus In X in equation (18) for argon at various
pressures: O, 40; A, 80; [, 200; @, 600 atm. Data are taken from
Reference 21

from (0, 7)™ "' =(ag' —a5')X? gives %o =1.47. This
means the maximum volume > for the §,—V curve is much
smaller than that for 3, T — P.

An examination of the expression for a, with respect
to volume is attempted in Figure 9 based on equation
(18). A linearity is observed between ln( oT) 'andIn X
with a slope 2.1 <f,<2.6 and a, ' —a, ! seems to be
slightly dependent on pressure (see Table 3).

It is interesting to discuss an essential difference
between polymers and simple liquid in terms of the
equation of state. It can be obtained from Table I that
the temperature dependence of y, at constant volume is
expressed by y,~T~!3 for PNBMA and PS and
v~ T'7 for PMMA, approximately, where in the former
case data are taken at temperatures above the glass
transition temperature T, while in the latter data are
taken below T,. The temperature dependence y,~T7 13
for the polymers is nearly the same as j, ~ {(T, — T)/T}’
with 1.20 < 4, < 2.23 observed in the simple hquld Ar (see
Table 2) because y,~{(T.~T)/T}'3~T '3 for a
polymer with T,>» T.

For polymers, equations (8) and (9) with X =
(V. —V)/V are not useful because the critical volume V,

for polymers cannot be determined experimentally. It is
more practical to introduce a variable Z defined by

Z=(V-Vy)/V (37)

where ¥ is the volume at the minimum point of the E-V
curve. We assume that the functions E(V, T)and S(V, T)
near the minimum point are expressed by

E=E—(,0T—P)(V—V,) (38)

=E(V, T)+ E\(T) (39)
S=8—7,0V=Vp) (40)

=8IV, T) + Sy(T) (41)

where y, o and P, are values at 0 K. Ej(V, T) and S)(V, T)

are assumed to be given by
E((V, T)= a3, T - PW{V/(V-Vo)}*  (42)

where 7, =7, —y,0=7, due to 3, y=0and P'=P— P,
and
SV, T)=api V{V/(V = Vo)}® (43)
Following the same procedure as before, it is derived that
PV =CUT)Z® explay '1,.,) (44)

and
G.T—P)W =Cy{(T)Z" explay 1, ;,) (45)
where [, is defined by

14
L=
V-V¥o

The function I, is expressed approximately by
IL,=K' —¢, InZ (46b)

The thermal expansion coefficient «, is derived under
conditions that «,T —» 0 at V -V, as

(0, T) ' ~ZP B <0 47)

Typlcal plots for In(a,T) ™! against InZ and 7,V and
(#,T — P)V against Z are shown in Figures 10 and 11.
Values of indices such as B, for polymers are listed in
Table 4.

The function of E around (0E/0V ), =0 for simple
liquids over a small volume is expressed by using a new

YAVA &1 X=150r 4, (46a)

e . . e e e
B :
14+
\\O\
BN
l» N
o o\O
=12 o
5
< N
= ..
\O\
1.0} \o\
o
\O
™~
\0
0.8¢ \o\
L S
S . . L . L
-1.2 =11 -1.0 -0.9 -0.8
in2

Figure 10 In(o, 7)™ ! versus In Z for polydimethyl siloxane. Data are
taken from Reference 24
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Table 4 Constants in In(x,T) ™! = 4; + B, In Z (equation (47)), In(§, V) = A, + , In Z (equation (50)) and In(7,T — P')V = 45 + A, In Z (equation

(51)) for various polymers®

Polymer® 1073M,, Vo (cm3g™!) B, A, 7, Ay A As

PIB 40.0 0.888 —1.50 —0.725 —1.64 —0.246 —-0.32 7.68
PS 51.0 0.760 —1.37 —0.522 -1.89 —0.616 —0.55 7.33
PDMS ~100 0.720 —1.76 —0.800 —2.67 —-1.13 —-1.12 6.42

CZ=(V=Vo)/V, 1 =100 "¢y, Ay =g —dg ‘&1, F, =y, and P =P

®Data are taken from Reference 25 for PS, Reference 26 for PIB and Reference 24 for PDMS
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Figure 11 In{(y,T — P)V/Z*} versus In Z and In(y,V/Z**) versus In Z
plots for polydimethyl siloxane with §, = —1.76, y, ;=0 and P, =0
in equations (50) and (51), where 3, T — P’ =y, T — P and 5, = y,. Data
are taken from Reference 24

variable Z defined in equation (37). The function 5. T — P’
around the minimum of E is given for simple liquids by
F,T— P)W ~Z°* for water and (5,7 — P')V ~ Z%*’
for Ar, these expressions are determined by experimental
data on y, and V,=18.02cm® mol~?! for water, V, =
24.2cm*mol ™' for Ar. It is stressed that the volume
dependence of §,T — P with a maximum in Figure 4 is a
general feature for all liquids, including polymers, and is
explained by using two variables such as X and Z. X is
useful over a liquid-like region and expresses the number
of molecules of volume V around a certain molecule
within the volume V, due to X = (V,— V)/V, while Z is
a measure of free volume per unit volume in equation (37).

The equation of state for the liquid-like region has
been determined based on equations (15) and (27) for
C,(T) and (31) for C(T):

P= (XﬁO/V)BT(Y"O +Cp) — JY Y%~ 1/(14Y) dY}

0
x exp(ag 'Io) — Do exp(ag 110)] (48)

This equation of state takes into account the temperature
dependence of y, at constant volume, (dy,/0T), <0, and
(0C,/0V ) <0 and (dy,/0V ) <0 observed experiment-
ally. On the other hand, the equation of state for the
solid-like region is given by

P'=CyT)Z™/V)T explog '1,,,)
— CUTYZ*/V) explag ', ;,) (49)

where C%(T) and C{(T) are functions of temperature.
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For polymers in this work C%(T) is given by C5(T)~
T*~1, from equations (26) and (44). C\(T)~ T* 1 is
obtained from equation (45) and C5(T) through an
equation similar to equation (19). It is also derived that
To = Ao is not a necessary condition for the equation of
state for the solid-like region as it is in a liquid-like region
where b, = f,. The expressions for 7,V and (7,7 — P}V
simplified by equation (46b) and the above relations are
given by

JV ~ Thom1Zl0=era6 )  Tho=17mn (50)
and
G,T — PV ~ Tkom1z0o=0a0"Y) | ko174 (51)

Values of indices in equations (50) and (51) are shown
in Table 4, where values of both 1,—e,a5! in the
expression for 3,V and 1, —¢&,a, ' in the expression for
5T — P’ are negative.

Foulkes'® derived a generalized equation of state
using the Lagrange method of indeterminate multipliers
which satisfies the third law of thermodynamics that
limy,,S=0andlim;_, C,=limy_,y, =limz_q a,=0.
It is given by

V=(T/P)p(P/T"*") + h(P) (52)

On the other hand, Yang et al.?* discussed the divergence
of C, at the critical point using the equation

C,=VT(3?P/dT?), — NT(@*u/0T?),  (53)

where p is the chemical potential 4 = G/N and N is the
number of molecules. In the present work it is shown
that y, ~ {(T,— T)/T}* with §,> 1.0 and, therefore,
(0y,/0T), — 0 in the limit T — T, over the volume range
much smaller than V, (see Figure 2). It is suggested from
this work that the divergence of C, at T, is attributed to
—NT(0*u/dT?), in equation (53) or C,(T) in equation
(25). The other interesting behaviour is shown in Figure
3 by dashed lines, where C, increases with increasing
volume over a range of larger volume, which cannot be
explained by equation (25) in this work.
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