Semiempirical equation of state for polymers and simple liquids: 2. Temperature and volume dependence of thermal pressure coefficient

S. Saeki, M. Tsubokawa and T. Yamaguchi

Department of Materials Science and Engineering, Fukui University, Fukui 910, Japan (Received 19 May 1988; revised 8 March 1990; accepted 19 March 1990)

The temperature and volume dependence of the thermal pressure coefficient γ_v have been examined using experimental data on γ_v for simple liquids argon and water based on the equation of state derived in a previous work. The expression for $\tilde{\gamma}_v$ is given by $\tilde{\gamma}_v V \sim [\{(T_c-T)/T\}^{\delta_0}+C_0]X^{\mu_0} \exp(\alpha_0^{-1}I_0)$ where $\tilde{\gamma}_v = \gamma_v - \gamma_{v,c}$, T_c is the critical temperature and I_0 is defined by $I_0 = \int_{V_c}^{V_c} X^{\beta_0}/V$ dV where $X = (V_c - V)/V$ and V_c is the critical volume. The heat capacity at constant volume C_v is given by $C_v \sim C_v(T) - \left[\frac{1}{T_c} - T\right]T$ $\sim \alpha_0 \exp(\alpha_0^{-1}I_0)$ where $C_v(T)$ is a function of temperature. Values of $\alpha_0, \beta_0, \delta_0$ and C_0 are constants. The equation of state for simple liquids is expressed using $Y = (T_c - T)/T$ by

$$
\tilde{P} = (X^{\beta_0}/V) \left[\left\{ T(Y^{\delta_0} + C_0) - \int_0^Y Y^{\delta_0 - 1}/(1 + Y) \, dY \right\} \exp(\alpha_0^{-1} I_0) - D_0 \exp(\alpha_0^{-1} I_0) \right]
$$

where D_0 is a constant. The temperature dependence of γ_v at constant volume for polymers is examined based on the experimental data by Simha and is given by $y_v \sim T^{k_0-1}$ and \bar{k}_0 is -0.24 for polystyrene and poly(n-butyl methacrylate) and 2.8 for polymethyl methacrylate. The equation of state for a polymer is derived by the same procedure as for a simple liquid and is given by

$$
P = C_2'(T)(Z^{\tau_0}/V)T \exp(\alpha_0'^{-1}I_{z,\tau_0}) - C_1'(T)(Z^{\lambda_0}/V) \exp(\alpha_0'^{-1}I_{z,\lambda_0})
$$

where $Z = (V - V_0)/V$, $I_{z,xo} = \int_0^V Z^{xo}/V dV$, $C_i(T)$ is a function of temperature, τ_0 , λ_0 , a'_0 and α'_0 are constants and V_0 is a constant volume at 0 K. The expression for γ_v is given by $\tilde{\gamma}_v'V \sim Z^{\tau_1}$ where τ_1 is a constant. The values of τ_1 determined by the experimental data are -1.89 for polystyrene, -1.64 for polyisobutylene and -2.67 for polydimethyl siloxane. An essential difference between polymers and simple liquids is discussed in terms of the functional form of the equation of state. A characteristic feature of the volume dependence of entropy and internal energy is discussed through the experimental data on γ_v over a wide range of temperature and pressure.

(Keywords: equation of state; polymer; simple liquids, thermal pressure coefficient; heat capacity at constant volume)

the most fundamental tool used in characterizing and Flory equation of state and found that the van der Waals
model and Tonks model are useful only over a limited predicting the thermomechanical and thermodynamical model and Tonks model are useful only over a limited respective of the liquid $\frac{1}{2}$ properties of pure liquids and liquid-liquid mixtures over a wide range of pressure and temperature. The most
famous equation of state for liquids was derived by van
maxima from the standness to the homogeneous function famous equation of state for liquids was derived by vali regions from the standpoint of the homogeneous function der Waals¹:

$$
PV/T = VR/(V-b) - a/VT
$$
 (1)

Equation (1) is expressed in a more general form by

$$
P/T = f(V) - g(V)/T \tag{2}
$$

a functional form similar to equation (2) although $f(V)$ Experimental results on $f(V)$ regulation: and $g(V)$ depend on the model used for the entropy and intermolecular energy of the liquid. In the Flory theory² of corresponding states the Tonks model for the entropy and the van der Waals model for intermolecular energy where both $h(V, T)$ and $m(V, T)$ are functions of volume are used, while in the Simha-Somcynsky theory the hole and temperature. 0032-3861/91/071244-08

© 1991 Butterworth-Heinemann Ltd.

1244 POLYMER, 1991, Volume 32, Number 7

INTRODUCTION model and the square-well approximation to the cell The equation of state for polymers and simple liquids is potential are used⁴. In a previous work we examined the
Flory equation of state and found that the van der Waals and proposed a semi-empirical equation of state for der waars. α approach α approach α ¹⁰. Many authors, such as Bridgman¹¹, Gib- $PV/T = VR/(V-b) - a/VT$ (1) son¹²⁻¹⁴, Scott¹⁵ and Foulkes¹⁶, have examined the where a and b are constant and R is the gas constant. The value of state experimentally and μ is the gas constant. The experimentally and found that the thermal pressure coefficient γ_{v} depends on temperature at constant volume, which does not agree with the prediction of van der Waals' equation that γ_v depends on volume only. Most equations of state derived by other authors^{2–8} have waals' equation that γ_v depends on volume only.

Experimental results on γ_v suggest the following

$$
P/T = h(V, T) - m(V, T)/T \tag{3}
$$

The main purpose of this work is to determine the $\int f(x) dx$ functions $h(V, T)$ and $m(V, T)$ by using the experimental data and an equation of state derived by the homogeneous function method. An essential difference between *{fv" }* polymers and simple liquids is discussed in terms of the equation of state.

METHOD that the contract of th

In previous work^{10,17,18} we derived an equation of state based on the following assumptions for internal energy E and entropy $S: E = \overline{E}(V) + \overline{E}(T), S = S(V) + S(T)$. We determined that the thermal pressure coefficient γ_{v} is a function of volume¹⁰ and the heat capacity at constant volume C_v is a function of temperature only¹⁸ and, therefore, $(\partial \gamma_v/\partial T)_v = 0$ and $(\partial C_v/\partial V)_T = 0$.

In this work we assumed the following equations for \tilde{E} and \tilde{S} to explain the negative ($\partial \gamma_v / \partial T$), and negative where $I_{b_0} = \exp(a_0^{-1} \int_{V_c}^v X^{\beta_0} / V \, dV)$, $I_{\beta_0} = \exp(\alpha_0^{-1} \int_{V_c}^v X^{\beta_0} / V \, dV)$

$$
\widetilde{E} = E - (\gamma_{\rm v,c} T - P_{\rm c}) V \tag{4}
$$

$$
= \tilde{E}_{\rm I}(V,T) + \tilde{E}_{\rm II}(T) \tag{5}
$$

$$
\tilde{S} = S - \gamma_{v,c} V \qquad (6) \qquad \begin{array}{c} (\omega_p)^2 + \omega_p^2 \\ dT \end{array}
$$

$$
= \widetilde{S}_{\mathrm{I}}(V, T) + \widetilde{S}_{\mathrm{II}}(T) \tag{7}
$$

where a subscript c refers to a value at the critical point. \tilde{E} and \tilde{S} represent the internal energy and entropy By considering the limiting case lim $_{T\to T_c} \alpha_p \to \infty$, equadetermined by taking the critical point as a reference tion (17) is expressed by state and are expressed as the sum of two terms, one a function of volume and temperature and the other a function of temperature only. Then we assumed that $\tilde{E}_1(V, T)$ and $\tilde{S}_1(V, T)$ are expressed by a homogeneous (18)
function of $V/(V_c - V)$ as where the equation $R - h$ is used which is obtained

$$
\widetilde{E}_1(V, T) = a_0(\widetilde{\gamma}_v T - \widetilde{P}) V \{ V / (V_c - V) \}^{b_0}
$$
 (8)

$$
\widetilde{S}_1(V, T) = \alpha_0 \widetilde{\gamma}_v V \{ V/(V_c - V) \}^{\beta_0}
$$
 (9)

where a_0 , b_0 , α_0 and β_0 are constants.
The following equations are also obtained from equations (4) and (5) :

$$
(\partial \tilde{E}/\partial V)_T = \gamma_v T - P - (\gamma_{v,c} T - P_c) = \tilde{\gamma}_v T - \tilde{P}
$$
 (10)

$$
(\partial \overline{S}/\partial V)_T = \gamma_v - \gamma_{v,c} = \tilde{\gamma}_v \tag{11}
$$

The equation of state is given from equations (10) and (11) by and

$$
\tilde{P} = (\partial \tilde{S}/\partial V)_T T - (\partial \tilde{E}/\partial V)_T
$$
 (12)

The following equations are derived through the same
procedure as in Reference 10:
 $\frac{\partial F}{\partial T} = T(\partial S/\partial T) = T(\partial S/\partial T)$, a relation at $V = \text{const}$ is ob-

$$
\tilde{\gamma}_{\rm v}T - \tilde{P} = C_1(T)(X^{b_0}/V) \exp\left\{a_0^{-1} \int_{V_{\rm c}}^V X^{b_0}/V \, \mathrm{d}V\right\} \quad (13) \quad \text{tained as} \\ \frac{\mathrm{d}C_1(T)}{a_0} \exp\left(a_0^{-1} I_0\right) + \frac{\mathrm{d}\tilde{E}_{\rm II}(T)}{B_{\rm II}} \, \mathrm{d}V
$$

where $C_1(T)$ is a function of temperature, $X = (V_c - V)/V$ and $\left($

$$
\tilde{\gamma}_v = C_2(T)(X^{\beta_0}/V) \exp\left\{\alpha_0^{-1} \int_{V_c}^V X^{\beta_0}/V \, dV\right\} \quad (14)
$$
\nIt is very interesting to derive C_v from γ_v using the following equations.

where $C_2(T)$ is a function of temperature. The equation thermodynamic equation of state is derived as **(***a*^T) = $($ ⁿ

$$
\tilde{P} = C_2(T)T(X^{\beta_0}/V) \exp\left\{\alpha_0^{-1} \int_{V_c}^V X^{\beta_0}/V \, dV\right\}
$$

$$
- C_1(T)(X^{\beta_0}/V) \exp\left\{a_0^{-1} \int_{V_c}^V X^{\beta_0}/V \, dV\right\} \quad (15)
$$

The main difference between this and previous work is in the use of $C_1(T)$ and $C_2(T)$ instead of constants C_0 and DERIVATION OF EQUATION OF STATE C_1 (Reference 10). By taking a derivative of equation (15) BASED ON THE HOMOGENEOUS FUNCTION with respect to temperature at constant P, it is derived

$$
\tilde{\gamma}_{\rm v}T\left[T^{-1}+\frac{d\ln\{C_2(T)/C_1(T)\}}{dT}+(b_0-\beta_0)V_{\rm c}\alpha_{\rm p}/VX+\frac{d\ln(I_{\beta_0}/I_{b_0})}{dV}V\alpha_{\rm p}\right]+\tilde{P}\left\{\frac{d\ln C_1(T)}{dT}-\frac{(b_0V_{\rm c}/VX+1)\alpha_{\rm p}+\frac{d\ln I_{b_0}}{dV}V\alpha_{\rm p}\right\}=0\tag{16}
$$

VdV) and $\alpha_p = (\partial \ln V/\partial T)_p$. By using an approximation that $\tilde{\gamma}_v T \gg \tilde{P}$, equation (16) reduces to

$$
(\alpha_p T)^{-1} + \frac{d \ln\{C_2(T)/C_1(T)\}}{dT} \alpha_p^{-1} + V_c(b_0 - \beta_0)/VX + V \left\{ \frac{d \ln(I_{\beta_0}/I_{b_0})}{dV} \right\} = 0 \quad (17)
$$

$$
(\alpha_p T)^{-1} = (a_0^{-1} - \alpha_0^{-1})X^{\beta_0} - \alpha_p^{-1} \frac{d \ln\{C_2(T)/C_1(T)\}}{dT}
$$
\n(18)

where the equation $\beta_0 = b_0$ is used, which is obtained $V\{V/(V_c - V)\}^{b_0}$ (8) from $(\alpha_p T)^{-1} \rightarrow 0$ in the limit $T \rightarrow T_c$. It is also obtained from equations (14), and (15), and (30/3T), α_p from equations (14) and (15) and $(\partial \overline{P}/\partial T)_V=$ $\tilde{S}_1(V, T) = \alpha_0 \tilde{\gamma}_v V \{V/(V_c - V)\}^{\beta_0}$ (9) $\frac{\tilde{I}(O)}{(\partial P/\partial T)_V - \lim_{T \to T_c} (\partial P/\partial T)_V} = \gamma_v - \gamma_{v,c} = \tilde{\gamma}_v$ that

$$
T \exp(\alpha_0^{-1} I_0) \left(\frac{\mathrm{d} C_2(T)}{\mathrm{d} T} \right) = \exp(a_0^{-1} I_0) \left(\frac{\mathrm{d} C_1(T)}{\mathrm{d} T} \right) \tag{19}
$$

where I_0 is defined by $I_0 = \int_{V_c}^{V} X^{\beta_0} / V dV$ and V_c in the integration range means $\lim_{T\to T_c} V$.

where $\tilde{P} = P - P_c$ and $\tilde{\gamma}_v = \gamma_v - \gamma_{v,c}$. From equation (6) Expressions for \tilde{E} and \tilde{S} are obtained from equations (5), (7), (8), (9), (13) and (14) as follows:

$$
\tilde{E} = a_0 C_1(T) \exp(a_0^{-1} I_0) + \tilde{E}_{II}(T)
$$
 (20)

$$
\tilde{P} = (\partial \tilde{S}/\partial V)_T T - (\partial \tilde{E}/\partial V)_T
$$
\n(12)
$$
\tilde{S} = \alpha_0 C_2(T) \exp(\alpha_0^{-1} I_0) + \tilde{S}_{II}(T)
$$
\n(21)

From $(\partial \vec{E}/\partial T)_v = T(\partial \vec{S}/\partial T)_v - \gamma_{v,c}V$, obtained from $(\partial E/\partial T)_v = T(\partial S/\partial T)_v$, a relation at $V = \text{const.}$ is obtained as

$$
\begin{aligned}\n&\int_{c}^{R} \frac{dF_{1}(T)}{dT} \exp(a_{0}^{-1}I_{0}) + \frac{d\tilde{E}_{II}(T)}{dT} + \gamma_{v,e}V \\
&= T \left\{ \alpha_{0} \frac{dC_{2}(T)}{dT} \exp(\alpha_{0}^{-1}I_{0}) + \frac{d\tilde{S}_{II}(T)}{dT} \right\} \quad (22) \\
&= T \left\{ \alpha_{0} \frac{dC_{2}(T)}{dT} \exp(\alpha_{0}^{-1}I_{0}) + \frac{d\tilde{S}_{II}(T)}{dT} \right\}\n\end{aligned}
$$

It is very interesting to derive C_v from γ_v using the

$$
\partial C_{\mathbf{v}}/\partial V)_{\mathbf{T}} = T(\partial \gamma_{\mathbf{v}}/\partial T)_{\mathbf{v}} \tag{23}
$$

and, therefore, DISCUSSION

$$
C_{\rm v} = \int T(\partial \gamma_{\rm v}/\partial T)_{\rm v} \, \mathrm{d}V + C_{\rm v}(T) \tag{24}
$$

where $C_v(T)$ is an integration constant and a function of temperature. Using the relation $(\partial \gamma_v/\partial T)_v = (\partial \tilde{\gamma}_v/\partial T)_v$ and equation (14), C_v is given by 2⁵

$$
C_{v} = T\{dC_{2}(T)/dT\}\alpha_{0} \exp(\alpha_{0}^{-1}I_{0}) + C_{v}(T) \quad (25)
$$

EXPERIMENTAL DATA ON TEMPERATURE

DEPENDENCE OF γ_v at CONSTANT

VOLUME AND VOLUME DEPENDENCE

OF C_v at CONSTANT TEMPERATURE DEPENDENCE OF $\gamma_{\rm v}$ at constant VOLUME AND VOLUME DEPENDENCE $\frac{20}{5}$ ²⁰ OF C, AT CONSTANT TEMPERATURE

Typical data for the pressure-temperature curve at constant volume for polymers^{19,20} poly(n-butyl methacrylate) (PNBMA) and poly(methyl methacrylate)
(PMMA) are shown in Figure 1, where values of $(\partial P/\partial T)$ 15 (PMMA) are shown in *Figure 1*, where values of $(\partial P/\partial T)$ for PNMBA decrease and those for PMMA increase slightly with increasing temperature at constant volume. The P-T line at constant volume is expressed by

$$
P = A_0 T^{k_0} + B_0 \qquad V = \text{const.} \tag{26}
$$

the data are listed in *Table 1*. In *Figure 2* experimental data on γ_v for argon²¹ are plotted against temperature at constant volume. γ_v decreases with increasing at various volumes: Δ , 27.78; \Box , 28.57; \odot , 29.41; \bullet , 30.30 cm³ mol⁻¹.

Data are taken from Reference 21. ——, Calculated from equation Data are taken from Reference 21. $-$
temperature. (27)

The volume dependence of C_v at constant temperature for argon²¹ is shown in *Figure 3.* C_y decreases $\frac{40}{35}$ $\frac{35}{10}$ $\frac{30}{100}$ $\frac{25}{100}$ $\frac{(cm^3/mol)}{100}$ with increasing volume or increases with increasing $X = (V_c - V)/V$.

from Reference 19 and 19 a

It is interesting to examine whether the experimental behaviour of γ_v , C_v and $\gamma_v T - P$ over a wide range of temperature and volume are explained by the equation

Figure 2 Thermal pressure coefficient γ_v versus temperature for argon at various volumes: Δ , 27.78; \Box , 28.57; \bigcirc , 29.41; \bigcirc , 30.30 cm³ mol⁻¹.

T(K) Figure 3 C, versus $X = (V_c - V)/V$ or V for argon at various turn at constant volume for: \bigcirc , temperatures: \bigcirc , 150; 140; Δ , 130 K. ——, Calculated from Figure 1 Pressure *versus* temperature at constant volume for: \bigcirc , temperatures: \bigcirc , 150; , 140; Δ , 130 K. ——, Calculated from PMMA (0.835 cm³ g⁻¹); Δ , PNBMA (0.95 cm³ g⁻¹). Data are taken equation (29 equation (29) with $n = 3.6$, $c = 0.05$ and $C_{v,0} = 1.63$. Data are from

Table 1 Values of constants in $P = A_0 T^{k0} + B_0$ for polymers at various constant volumes⁴

PNBMA						PS		PMMA				
V $\rm (cm^3 \ g^{-1})$ 10 ⁻⁴ A_0		$10^{-4}B_0$	k_{0}	$\text{(cm}^3 \text{ g}^{-1})$ $10^{-2} A_0$		$10^{-2}B_0$	k_{0}	V $\rm (cm^3 \ g^{-1})$ 10 ⁵ A_0		$10^{-2}B_0$	k_0	
0.95	-9.42	1.51	-0.32	0.971	-9.25	1.20	-0.35	0.820	0.2	8.18	3.38	
0.96	-7.23	3.42	-0.13	0.980	-11.3	8.73	-0.04	0.825	4.3	3.94	2.89	
0.97	$-0.10s$	7.66	-0.05	0.990	-8.16	1.15	-0.33	0.830	6.1	0.78	2.84	
0.98	-7.30	4.06	-0.10	1.00	-7.87	1.20	-0.32	0.835	21.8	-2.45	2.60	
0.99	-8.65	1.24	-0.33					0.840	61.0	-5.42	2.47	
1.00	-6.80	1.54	-0.25									

"Data are taken from Reference 19 for PNBMA and PMMA and Reference 20 for PS. The unit of P is atm

Table 2 Constants in $\tilde{\gamma}_v = A_1 \{(T_c - T)/T\}^{\delta_0} + B_1$ (equation (27)) and $\tilde{\gamma}_v T - \tilde{P} = A_2 \{(T_c - T)/T\}^{\delta_0} + B_2$ (equation (32)) for argon⁴

		Ϊv.			$\tilde{\gamma}_u T - \tilde{P}$ $A_{\mathcal{P}}$		В.
V (cm ³ mol ⁻¹)	\mathcal{A}	\mathcal{O}_{Ω}	В	<i>V</i> (cm ³ mol ⁻¹)			
27.03	15.5	2.23	18.6	27.0	1607	1.81	1127
27.78	7.43	1.74	17.1	28.0	1183	1.56	1198
28.57	5.26	1.43	15.7	29.0	879	1.29	1208
29.41	4.99	1.32	14.3	30.0	1071	1.62	1225
30.30	3.82	1.25	13.0	32.0	710	1.30	1134
31.25	5.05	1.54	11.7				
32.26	4.12	1.43	10.5				

^aData are taken from Reference 21. The units of \tilde{y}_v and \tilde{P} are atm K⁻¹ and atm, respectively

of state in this work. First, it is necessary to determine $\sqrt{300}$ $C_2(T)$ in equation (14) based on experimental data for γ_{v} . We assume that $C_2(T)$ is expressed by a homogeneous function of $(T_c-T)/T$:

$$
C_2(T) \sim \tilde{\gamma}_v = A_1 \{ (T_c - T)/T \}^{\delta_0} + B_1 \quad V = \text{const.} \quad (27)
$$

2 are listed in *Table 2.* C_v is given by using equations

(25) and (27) as
 $C_v \sim C_v(T) - A_1(T_c/T) \alpha_0 \delta_0 \{ (T_c - T)/T \}^{\delta_0 - 1} \exp(\alpha_0^{-1} I_0)$

$$
C_{\rm v} \sim C_{\rm v}(T) - A_1(T_{\rm c}/T)\alpha_0 \delta_0 \{ (T_{\rm c} - T)/T \}^{\delta_0 - 1} \exp(\alpha_0^{-1} I_0)
$$
\n(28)

The divergence of C_v near T_e is due to $C_v(T)$ since $\delta_0 > 1$. If an approximation $I_0 = \int_{V_s}^{V} X^{\beta_0} / V \, dV \approx -X^n$ is used, C_v 1.0 ight in equation (28) is expressed by using $A_1(T_c/T)\alpha_0 \times \delta_0 Y^{\delta_0 - 1} = A_0(T)$ as

$$
C_{\rm v} = C_{\rm v,0} + A_0(T)\{1 - \exp(-cX^n)\}\tag{29}
$$

where $C_{v,0}$ is the value of C_v at $X=0$ and $C_{v,0}=$ $C_{\rm v}(T) - A_0(T)$. A comparison between the experimental data C_v for Ar and C_v calculated by equation (29) with $n=3.6$ and $c=0.05$ is shown in *Figure 3*, where 0.6 reasonable agreement is obtained.

Values of $\bar{\gamma}_v T - \bar{P}$ calculated from equation (13) using the experimental data on $\tilde{\gamma}_v$ for Ar at constant tempera-
ture are plotted against volume in *Figure 4.* $C_1(T)$ is. $0.4\frac{1}{24}$ ture are plotted against volume in *Figure 4.* $C_1(T)$ is $0.4\frac{1}{24}$ $0.28\frac{1}{26}$ $0.30\frac{32}{36}$ $0.33\frac{34}{36}$ $0.38\frac{40}{36}$ calculated from equation (19) by $V_{(cm^3/mol)}$

$$
C_1(T) = \exp\{(\alpha_0^{-1} - a_0^{-1})I_0\} \int_{T_c}^{T} T\{dC_2(T)/dT\} dT
$$

\nFigure 4 $\tilde{\gamma}_v T - \tilde{P}$ and $\tilde{\gamma}_v$ versus V for argon at various temperatures.
\nThe plots for $\tilde{\gamma}_v T - \tilde{P}$ are: \bigcirc , 150; \blacktriangle , 140; \square , 130; \triangle , 120; \blacktriangle , 110;
\n(30)
\n100 K. The plot for $\tilde{\gamma}_v$ is \blacktriangle , 150 K. Data are taken from Reference 21

$$
\sim \exp\{(\alpha_0^{-1} - a_0^{-1})I_0\} \int_0^Y Y^{\delta_0 - 1}/(1 + Y) dY
$$
\n(31)

used in deriving equation (31). The function $C_1(T)$ is $(Table 3)$. The volume dependence of $(\partial \tilde{E}/\partial V)_T = \tilde{\gamma}_v T - \tilde{P}$ determined by a plot of $\tilde{x}T - \tilde{P}$ against temperature at determined by a plot of $\tilde{\gamma}_{y}T - \tilde{P}$ against temperature at constant volume using the data in *Figure 4* and is for water at saturated vapour pressure calculated from constant volume using the data in *Figure 4* and is expressed as $\frac{1}{2}$ and $\frac{1}{2}$ and $\frac{1}{2}$ and $\frac{1}{2}$ the experimental data is shown in *Figure 6*, where the

$$
C_1(T) \sim \tilde{\gamma}_v T - \tilde{P} = A_2 Y^{\varepsilon_0} + B_2 \tag{32}
$$

Table 2 shows that values of ε_0 are comparable with δ_0 in $C_2(T)$, which is expected from equation (31) through $C_1(T) \sim Y^{\delta_0}$ when $Y \ll 1$.

is analysed with equation (14) using the approximation

$$
v_0 = K - v_0 \ln X \tag{33}
$$

I, 100 K. The plot for $\tilde{\gamma}_v$ is \bullet , 150 K. Data are taken from Reference 21

where K and v_0 are constants, which leads to

(34)
$$
\tilde{\gamma}_{\nu} V = C_2^*(T) X^{(\beta_0 - v_0 \alpha_0^{-1})}
$$

where equation (27) for $C_2(T)$ and $Y = (T_c - T)/T$ are
used in deriving equation (31) The function $C(T)$ is and In X with a slope $(\beta_0 - v_0 \alpha_0^{-1}) \le 1.36$ is observed volume dependence of $\tilde{\gamma}_v$ is also included. In *Figure* 7 an attempt is made to explain the volume dependence of where v = constant.
Table 2 shows that values of s, are comparable with is obtained experimentally from the volume dependence
is obtained experimentally from the volume dependence δ_0 in $C_2(T)$, which is expected from equation (31) through of α_p in equation (18) (see below). It is noteworthy that the functions $(\tilde{\gamma}_v T - \tilde{P})V$ for argon and water are almost $C(T) \sim Y^{\delta_0}$ when $Y \ll 1$ (1) \sim T when $T \ll 1$.
The volume dependence of $\tilde{\gamma}_v$ at constant temperature
analysed with equation (14) using the approximation
2.60 ln X – 1.8X for Ar and $\ln(\tilde{\gamma}_v T - \tilde{P})V = 13.21 +$ that $I_0 = K - v_0 \ln X$ (33) $I_1 = K - v_0 \ln X$ (33) is obtained except for large X or smaller volume is obtained except for large X or smaller volume

			$\tilde{\gamma}_{\rm v}V$				
P (atm)	$(\alpha_{\rm p}T)^{-1}$ $(a_0^{-1}-a_0^{-1})$	B ₀	T(K)	C_2^* (atm cm ³ K ⁻¹ mol ⁻¹) $(\beta_0 - \gamma_0 \alpha_0^{-1})$			
40	0.74	2.6	110	262	1.30		
-80	0.80	2.5	120	247	1.33		
200	0.94	2.2	130	245	1.30		
600	1.09	2.1	150	233	1.36		

Table 3 Constants in $(\alpha_p T)^{-1} = (a_0^{-1} - \alpha_0^{-1})X^{\beta_0}$ (equation (18)) and $\tilde{\gamma}_v V = C^*_Z X^{(\beta_0 - \gamma_0 \alpha_0^{-1})}$ (equation (34)) for argon^a

=Data are taken from Reference 21

C, 150; Δ , 140; \bullet , 130; \square , 120; \blacktriangle , 110; v, 100 K (B). Temperatures for argon are: O, 150; Δ , 140; \bullet , 130; \square , 120 K.

Figure 6 $\tilde{\gamma}_v T - \tilde{P}$ and $\tilde{\gamma}_v$ versus V plots for water at saturated vapour pressure: \overline{O} , $\tilde{\gamma}_vT-\tilde{P}$; \bullet , $\tilde{\gamma}_v$. Data are taken from Reference 22

corresponding to high pressure. The maximum point in the $(\tilde{\gamma}_v T - \tilde{P})$ *versus V* curve indicates an inflection point in the $E-V$ or $E-r$ curve. The volume at the inflection
point is about 29 cm³ mol⁻¹ for Ar and 20 cm³ mol⁻¹ for water and a great difference between Ar and maximum volume for the $\gamma_v - \nu$ curve and α_0 is shown water is observed in the maximum internal pressure. in *Figure 8* (the same relation holds for a_0). The volume $(\partial \tilde{E}/\partial V)_{T,\text{max}} \approx 1.4$ katm for Ar and 6.0 katm for water.
There is another important relation between $\tilde{v} - V$ and increasing α_0 or a_0 . The value of a_0 for Ar is evaluated There is another important relation between $\tilde{\gamma}_{v}$ – V and

Figure 5 ln($\gamma_v - \gamma_{v,c}$)V versus ln X for argon at various temperatures: **Figure** 7 ln($\tilde{\gamma}_vT-\tilde{P}V-2.6$ ln X versus X for argon (A) and water Data are taken from Reference 21 for argon and Reference 22 for water at saturated vapour pressure

 $\hat{\mathbf{e}}$ with volume from 24 to 44 cm³ mol⁻¹, while $\tilde{\gamma}_v T - \tilde{P}$ has $\begin{bmatrix} 6.0 & 6 \end{bmatrix}$ $\begin{bmatrix} 6.0 & 1 \end{bmatrix}$ which suggests that ^{10.0} the inflection point in the $E-V$ curve does not coincide
with that in the $S-V$ curve and that the inflection point
for the entropy may exist at much smaller volume. On with that in the $S-V$ curve and that the inflection point $_{4.0}$ $_{+6}$ $_{+6}$ $_{+6}$ for the entropy may exist at much smaller volume. On $\sum_{n=1}^{\infty}$ the other hand, if it is assumed that $\tilde{\gamma}_v$ for water depends $_{5.0}$ on volume only, a maximum point for the $\tilde{\gamma}_{v}$ -V curve is at $20 \text{ cm}^3 \text{ mol}^{-1}$, which is the same as the maximum

It is interesting to discuss the functional difference between $\tilde{\gamma}_v$ and $\tilde{\gamma}_v T - P$ with respect to volume at $^{0.0}$ constant temperature based on equations (13) and (14) $\begin{bmatrix} 0.0 \\ 0.0 \end{bmatrix}$ with $b_0 = \beta_0$, where the main difference appears in the $\frac{1}{20}$ constants α_0 and a_0 only. It is possible to calculate the condition for the maximum for $\tilde{\gamma}_v$ and $\tilde{\gamma}_v T - \tilde{P}$ against V , given by

and

$$
(\partial \gamma_v / \partial V)_T = X^{\mu_0 + 1} - \alpha_0 (1 + \beta_0) X - \alpha_0 \beta_0 = 0 \quad (35)
$$

$$
\{\partial(\tilde{\gamma}_v T - \tilde{P})/\partial V\}_T = X^{\beta_0 + 1} - a_0(1 + \beta_0)X - a_0\beta_0 = 0
$$
\n(36)

point is about 29 cm³ mol⁻¹ for Ar and 20 cm³ mol⁻¹ In the simple case of $\beta_0 = 2.0$, the relation between the for water and a great difference between Ar and maximum volume for the $\gamma_v - V$ curve and α_0 is shown $(\tilde{\gamma}_vT-\tilde{P})-V$ curves for Ar: $\tilde{\gamma}_v$ decreases monotonously from equation (36) with $\beta_0 = 2.60$, $X_{\text{max}} = (V_c/V_{\text{max}})-1$, $V_c = 74.6$ cm³ mol⁻¹ and $V_{\text{max}} = 29$ cm³ mol⁻¹, which * 1 atm $\approx 10^5$ N

Figure 8 V_{max} versus α_0 calculated from equation (35) with $\beta_0 = 2.0$ and

pressures: \bigcirc , 40; Δ , 80; \Box , 200; \bullet , 600 atm. Data are taken from $(\tilde{\gamma}_v' T - \tilde{P})V$ against Z are shown in *Figures 10* and *11*. Reference 21 Reference 21

from $(\alpha_p T)^{-1} = (a_0^{-1} - \alpha_0^{-1})X^{\beta_0}$ gives $\alpha_0 = 1.47$. This means the maximum volume for the $\tilde{\gamma}_v$ -V curve is much liquids over a small volume is expressed by using a new smaller than that for $\tilde{\gamma}_v T - \tilde{P}$.

An examination of the expression for α_p with respect to volume is attempted in *Figure* 9 based on equation with a slope 2.1 $\leq \beta_0 \leq 2.6$ and $a_0^{-1} - a_0^{-1}$ seems to be 1.4^{\dagger} slightly dependent on pressure (see Table 3).

It is interesting to discuss an essential difference between polymers and simple liquid in terms of the $\sum_{k=1}^{\infty}$ is equation of state. It can be obtained from *Table 1* that the temperature dependence of γ_v at constant volume is γ_{γ} expressed by $\gamma_{\rm v} \sim T^{-1.3}$ for PNBMA and PS and $\gamma_{\rm o}$ $v_v \sim T^{1.7}$ for PMMA, approximately, where in the former $v_{1,0}$ case data are taken at temperatures above the glass \ transition temperature $T_{\rm g}$ while in the latter data are taken below T_g . The temperature dependence $\gamma_s \sim T^{-1.3}$ [γ_s] γ_s [γ_s [γ_s] γ_s [γ_s] for the polymers is nearly the same as $\tilde{\gamma}_{\rm v} \sim \{ (T_{\rm c} - T)/T \}^{\delta_0}$ ^{0.8|} with 1.20 $\le \delta_0 \le 2.23$ observed in the simple liquid Ar (see leading order to the simple liquid Arc see later than ≥ 1 polymer with $T_c \gg T$.

For polymers, equations (8) and (9) with $X =$ Figure 10 $\ln(\alpha_p T)^{-1}$ *versus* $\ln Z$ for polydimethyl siloxane. Data are $(V_c - V)/V$ are not useful because the critical volume V_c taken from Reference 24

more practical to introduce a variable Z defined by

$$
Z = (V - V_0)/V \tag{37}
$$

where V_0 is the volume at the minimum point of the $E-V$ near the minimum point are expressed by

$$
\tilde{E} = E - (\gamma_{v,0} T - P_0)(V - V_0)
$$
 (38)

$$
= \widetilde{E}_1'(V, T) + \widetilde{E}_1'(T) \tag{39}
$$

$$
\tilde{S} = S - \gamma_{\text{max}}(V - V_0) \tag{40}
$$

$$
= \widetilde{S}'_1(V, T) + \widetilde{S}'_2(T) \tag{41}
$$

where $\gamma_{v,0}$ and P_0 are values at 0 K. $\tilde{E}_1'(V, T)$ and $\tilde{S}_1'(V, T)$ are assumed to be given by

$$
\tilde{E}'_1(V, T) = a'_0(\tilde{\gamma}'_v T - \tilde{P}')V\{V/(V - V_0)\}^{\lambda_0} \tag{42}
$$

 α_0 and $\tilde{P}' = P - P_0$ where $\tilde{\gamma}'_v = \gamma_v - \gamma_{v,0} = \gamma_v$ due to $\gamma_{v,0} = 0$ and $\tilde{P}' = P - P_0$

$$
\tilde{S}'_I(V, T) = \alpha'_0 \tilde{\gamma}'_V V \{ V/(V - V_0) \}^{\tau_0}
$$
 (43)

Following the same procedure as before, it is derived that

$$
\tilde{\gamma}_{v} V = C'_{2}(T) Z^{\tau_{0}} \exp(\alpha_{0}^{\prime - 1} I_{z, \tau_{0}})
$$
(44)

$$
(\tilde{\gamma}'_{\mathbf{v}}T - \tilde{P}')V = C_1'(T)Z^{\lambda_0} \exp(a_0'^{-1}I_{z,\lambda_0}) \tag{45}
$$

where $I_{z,x}$ is defined by

$$
I_{z,x} = \int_{V \to V_0}^{V} Z^x / V \, \mathrm{d}V \qquad x = \tau_0 \text{ or } \lambda_0 \qquad (46a)
$$

The function I_z is expressed approximately by

$$
I_{z,x} = K' - \varepsilon_1 \ln Z \tag{46b}
$$

conditions that $\alpha_p T \rightarrow 0$ at $V \rightarrow V_0$ as

$$
(\alpha_p T)^{-1} \sim Z^{\beta_1} \qquad \beta_1 < 0 \tag{47}
$$

Figure 9 $\ln(\alpha_p T)^{-1}$ *versus* $\ln X$ in equation (18) for argon at various $\frac{(\alpha/T)^{-1}}{(\alpha/T)^{-1}}$ against $\frac{1}{(\alpha/T)^{-1}}$ against $\frac{1}{(\alpha/T)^{-1}}$ against $\frac{1}{(\alpha/T)^{-1}}$ *versus* $\ln Z$ and $\frac{5}{\alpha'}V$ and Table 4.
The function of \tilde{E} around $(\partial \tilde{E}/\partial V)_T = 0$ for simple

Semiempirical equation of state for polymers and simple liquids: S. Saeki et al.

Table 4 Constants in $\ln(\alpha_p T)^{-1} = A_3 + \beta_1 \ln Z$ (equation (47)), $\ln(\tilde{\gamma}_V') = A_4 + \tau_1 \ln Z$ (equation (50)) and $\ln(\tilde{\gamma}_V' T - \tilde{P}')V = A_5 + \lambda_1 \ln Z$ (equation (51)) for various polymers^a

Polymer ^b	$10^{-3} M_{\rm w}$	V_0 (cm ³ g ⁻¹)	β_1	A_{2}		Aι	л,	π
PIB	40.0	0.888	-1.50	-0.725	-1.64	-0.246	-0.32	7.68
PS	51.0	0.760	-1.37	-0.522	-1.89	-0.616	-0.55	7.33
PDMS	\sim 100	0.720	-1.76	-0.800	-2.67	-1.13	-1.12	6.42

 ${}^4Z = (V - V_0)/V$, $\tau_1 = \tau_0 - \alpha_0 \cdot \varepsilon_1$, $\lambda_1 = \lambda_0 - a_0 \cdot \varepsilon_1$, $\tilde{\gamma}_v = \gamma_v$ and $P = P$

~Data are taken from Reference 25 for PS, Reference 26 for PIB and Reference 24 for PDMS

Figure 11 $\ln\{(v_vT-P)V/Z^{\beta_1}\}$ versus $\ln Z$ and $\ln(v_vV/Z^{\beta_1})$ versus $\ln Z$ \sim $\frac{1}{\gamma_v}T-\tilde{P}'$ are negative. plots for polydimethyl siloxane with $\beta_1 = -1.76$, $\gamma_{v,0} = 0$ and $P_0 = 0$ $\gamma_v I - P$ are negative. in equations (50) and (51), where $\tilde{\gamma}'_v = \tilde{\gamma}'_vT-P$ and $\tilde{\gamma}'_v = \gamma_v$. Data Foulkes¹⁶ derived a generalized equation of state

variable Z defined in equation (37). The function $\tilde{\gamma}'_v T - \tilde{P}'$ It is given by around the minimum of E is given for simple liquids by $(\tilde{\gamma}'_rT-\tilde{P}')V\sim Z^{0.45}$ for water and $(\tilde{\gamma}'_rT-\tilde{P}')V\sim Z^{0.47}$ $V = (T/P)\varphi(r/T) + n(r)$ (52) for Ar, these expressions are determined by experimental On the other hand, Yang *et al.*²³ discussed the divergence data on γ_v and $V_0 = 18.02 \text{ cm}^3 \text{ mol}^{-1}$ for water, $V_0 =$ of C_v at the critical point using th data on γ_v and $V_0 = 18.02 \text{ cm}^3 \text{ mol}^{-1}$ for water, $V_0 =$ $24.2 \text{ cm}^3 \text{ mol}^{-1}$ for Ar. It is stressed that the volume dependence of $\tilde{\gamma}_{\rm v} T - \tilde{P}$ with a maximum in *Figure 4* is a general feature for all liquids, including polymers, and is where μ is the chemical potential $\mu = G/N$ and N is the explained by using two variables such as X and Z . X is number of molecules. In the present work it is shown useful over a liquid-like region and expresses the number that $\gamma_v \sim \{(T_c - T)/T\}$ with $\delta_0 > 1.0$ and, therefore, of molecules of volume V around a certain molecule $(\partial y_v/\partial T)_v \to 0$ in the limit $T \to T_c$ over the volume range within the volume V_c due to $X = (V_c - V)/V$, while Z is much smaller than V_c (see *Figure 2*). It is suggested from a measure of free volume per unit volume in equation (37). this work that the divergence of C_v at T_c is attributed to

been determined based on equations (15) and (27) for (25). The other interesting behaviour is shown in *Figure* $C_2(T)$ and (31) for $C_1(T)$: 3 by dashed lines, where C_v increases with increasing

$$
\tilde{P} = (X^{\beta_0}/V) \left[\left\{ T(Y^{\delta_0} + C_0) - \int_0^Y Y^{\delta_0 - 1} / (1 + Y) \, dY \right\} \times \exp(\alpha_0^{-1} I_0) - D_0 \exp(\alpha_0^{-1} I_0) \right]
$$
(48)

This equation of state takes into account the temperature Thermodynamik', Vols 1 and 2, Leipzig, Amsterdam, 1908
Thermodynamik', Vols 1 and 2, Leipzig, Amsterdam, 1908 dependence of γ_v at constant volume, $(\partial \gamma_v / \partial T)_v < 0$, and 86, 3507 $(\partial C_v/\partial V)_T < 0$ and $(\partial \gamma_v/\partial V)_T < 0$ observed experiment-
ally. On the other hand, the equation of state for the 1952, 26, 751 ally. On the other hand, the equation of state for the $\frac{1}{2}$ solid-like region is given by 1969, 2, 342
5 Patterson D, Bhattacharvyra, S, N, and Picker, P, Transformation of the State of Tra

$$
\tilde{P}' = C_2'(T)(Z^{\tau_0}/V)T \exp(\alpha_0'^{-1}I_{z,\tau_0})
$$
\n
$$
- C_1'(T)(Z^{\lambda_0}/V) \exp(\alpha_0'^{-1}I_{z,\lambda_0})
$$
\n(49) *Farata*\n
$$
+ C_1'(T)(Z^{\lambda_0}/V) \exp(\alpha_0'^{-1}I_{z,\lambda_0})
$$
\n(49) *farata*

where $C'_2(T)$ and $C'_1(T)$ are functions of temperature.

 T^{k_0-1} , from equations (26) and (44). $C'_1(T) \sim T^{k_0-1}$ is equation similar to equation (19). It is also derived that $\tau_0 = \lambda_0$ is not a necessary condition for the equation of state for the solid-like region as it is in a liquid-like region where $b_0 = \beta_0$. The expressions for $\tilde{\gamma}'_v V$ and $(\tilde{\gamma}'_v T - \tilde{P}')V$ given by

$$
\tilde{\gamma}_{\nu}'V \sim T^{k_0 - 1} Z^{(t_0 - \varepsilon_1 \alpha_0^{-1})} \sim T^{k_0 - 1} Z^{t_1}
$$
 (50)

and

$$
(\tilde{\gamma}'_{\mathbf{v}}T - \tilde{P}')V \sim T^{k_0 - 1}Z^{(\lambda_0 - \varepsilon_1 a_0 - 1)} \sim T^{k_0 - 1}Z^{\lambda_1} \quad (51)
$$

Values of indices in equations (50) and (51) are shown
 $\frac{1}{1,3}$ -1.3 $\frac{1}{1,2}$ -1.0 $\frac{1}{1,2}$ -1.0 $\frac{1}{1,2}$ -0.8 $\frac{1}{1,2}$ in *Table 4*, where values of both $\tau_0 - \varepsilon_1 \alpha_0^{-1}$ in the

expression for $\tilde{\gamma$

are taken from Reference 24 using the Lagrange method of indeterminate multipliers which satisfies the third law of thermodynamics that $\lim_{T\to 0} S = 0$ and $\lim_{T\to 0} C_{\rm v} = \lim_{T\to 0} \gamma_{\rm v} = \lim_{T\to 0} \alpha_{\rm n} = 0$.

$$
V = (T/P)\varphi(P/T^{n+1}) + h(P) \tag{52}
$$

$$
C_{\mathbf{v}} = VT(\partial^2 P/\partial T^2)_{\mathbf{v}} - NT(\partial^2 \mu/\partial T^2)_{\mathbf{v}} \tag{53}
$$

The equation of state for the liquid-like region has $-NT(\partial^2 \mu/\partial T^2)$ in equation (53) or $C_v(T)$ in equation volume over a range of larger volume, which cannot be explained by equation (25) in this work.

REFERENCES

- 3 1 Van der Waals, J. D. and Kohnstamm, P. 'Lehrbuch der
-
-
-
- 5 Patterson, D., Bhattacharyyra, S. N. and Picker, P. *Trans. Faraday Soc.* 1968, **64**, 648
6 Sanchez, I. C. and Lacomb
- 6 Sanchez, I. C. and Lacombe, R. H. *Maeromolecules* 1978, 11,
- 7 Fujisawa, K., Shiomi, T., Hamada, F. and Nakajima, A. *Polym.*
-
-
- 9 Saeki, S. and Yamaguchi, T. *Polymer* 1987, 28, 484 30, 156
10 Saeki, S., Tsubokawa, M. and Yamaguchi, T. *Polymer* 1988, 19 Olabisi.
- 11 Bridgman, P. W. *Proc. Am. Acad. Arts Sci.* 1931, 66, 185 *Polym.* 1962, 183, 110
12 Gibson, R. E. and Kincaid, J. F. J. Am. Chem. Soc. 1938, 60, 511 21 Streett, W. B. Physica 1974, 76, 59
-
- 12 Gibson, R. E. and Kincaid, J. F. J. Am. Chem. Soc. 1938, 60, 511 21 Streett, W. B. *Physica* 1974, 76, 59
13 Gibson, R. E. and Loeffler, O. H. J. Am. Chem. Soc. 1939, 61, 22 Rowlinson, J. S. and Swinton, F. L. 'Liquids Gibson, R. E. and Loeffler, *O. H. J. Am. Chem. Soc.* 1939, **61**, 22
2515 2515 Mixtures', Butterworth Scientific, London, 1982
Gibson, R. E. and Loeffler, O. H. J. Am. Chem. Soc. 1941, 63, 898 23 Yang, C. N. and Yang, C. P. Phys. Rev. Lett. 1
- 14 Gibson, R. E. and Loeffler, O. H. J. Am. Chem. Soc. 1941, 63, 898 23 Yang, C. N. and Yang, C. P. *Phys. Rev. Lett.* 1964, 13, 303
15 Scott, E. Wood, Sandus, O. and Weissman, S. J. Am. Chem. 24 Shih, H. and Flory, P. J. 15 Scott, E. Wood, Sandus, O. and Weissman, *S. J. Am. Chem.* 24 *Soc.* 1957, **79**, 1777
-
- 16 Foulkes, P. *Physica* 1951, 17, 943
17 Saeki, S., Tsubokawa, M. and Yamaguchi, T. *Polymer* 1989. 26 Saeki, S., Tsubokawa, M. and Yamaguchi, T. *Polymer* 1989, 30, 672
- *8 Dee, G.T. andWalsh, D.J. Macromolecules1988,21,811,815* 18 Saeki, S., Tsubokawa, M. and Yamaguchi, T. *Polymer* 1989,
	- 10 Saeki, S., Tsubokawa, M. and Yamaguchi, T. *Polymer* 1988, 19 Olabisi, O. and Simha, R. *Macromolecules* 1975, 8, 206
	- 29, 123 20 Hellwege, K. H., Knappe, W. and Lehmann, P. *Kolloid-Z. Z.*
		-
		-
		-
		-
		- **Hocker, H., Blake, G. J. and Flory, P. J.** *Trans. Faraday Soc.* **1971, 67, 2251 Flory, P. J., Ellenson, J. L. and Eichinger, B. E.** *Macromolecules*
		- 1968, 1, 279